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Abstract 
The optimization of high power converters providing high-quality voltage levels and high- efficiency energy conversion 
leads to low switching frequencies and second-order LC filters with high resonant frequencies. Due to these narrow 
frequency ratios, classical control schemes comprising an inner current loop and an outer voltage loop are not feasible. 
The same applies to the single-loop dead-beat strategy or to the direct control technique, as their simple single-order 
predictive model does not offer the required level of accuracy. This article develops higher order prediction models and 
computes the prediction error for different frequency ratios and approximation orders. This analysis shows that in the 
case of an optimized industrial outage and sag compensator, a second-order prediction model provides the required 
accuracy; hence, the second-order predictive direct control is developed. This control drives both the inductor current 
and the capacitor voltage simultaneously, assures constant switching frequency, and results in robust and stable 
behaviour. Simulation and experimental results show the validity of the approach. 
 
 

1. Introduction 
During the last years, medium- and low-voltage grids have 
been interconnected to a large number of new active 
systems such as wind turbines, hydraulic generators, fuel 
cells, storage devices, power quality improvement units, 
and others. Almost all of these new installations are 
interconnected to the grid by means of a voltage source 
inverter (VSI) and a filter. Depending on the application, 
the VSI–filter system must offer high quality and fast 
driving capability of its output current (active filters, VAR 
compensator, etc.), voltage (dynamic voltage restorer, 
uninterrupted power system, etc.), or power (variable speed 
generators, fuel cells, etc.). This article focuses on systems 
delivering high quality voltage, that is, containing output 
filters of order two or higher (LC or LCL filter). 

Typical industrial applications require low-cost and 
efficient systems; therefore, some constraints concerning 
the reactive elements of the filter and the switching 
frequency must be considered. When high efficiency is 
desired (particularly in high power systems), switching 
losses must be minimized, that is, low switching frequency 
is preferably used [1]–[7]. On the other hand, though a high 
LC value improves the output voltage quality, it increases 
the filter cost, the VSI must be oversized in order to keep 
the same nominal output rating, and the overall dynamic is 
penalized. Because of this, the minimum LC value that 
complies with connection regulations in terms of harmonics 
and THD must be selected [8], [9]. 

In the frame of high-power systems with optimized reactive 
elements, the high resonance frequency of the filter (f0) 
combined with the low switching frequency of the VSI (fsw) 
leads to narrow frequency ratios 50 <= ffm sw . This is 
the case of the high power converters of  ( 2.43 << m ) [1], 
( 7.2=m ) [2], and ( 9.3=m ) [9]. Most of the works related 
to control tasks consider high 0ffm sw=  ratios (above 
10), which make it possible to implant well-known control 
strategies [8]–[11]. This is the case of the multiloop, dead-
beat control scheme, with an inner current loop and an outer 
and slower voltage loop [9],[10], or the single loop dead-
beat case [11]. The same applies for direct control schemes, 
where the first-order Taylor approximation offers an 
accurate prediction of the evolution of filter variables. 

However, when low 0ffm sw=  ratios are 
considered, it is not possible to decouple the inductor 
current dynamics from that of the capacitor voltage; hence, 
high dynamic multiloop schemes are not feasible [9]. 
Similarly, in the case of direct control schemes, the first-
order Taylor approximation does not reflect the evolution 
of the state with the desired level of accuracy, as will be 
shown later. Generally, the control of these types of 
systems is achieved by conservative strategies and includes 
a filter stabilization facility, for example, a damping resistor 
(penalizing the overall efficiency) [5],[12], or any active 
stabilization strategy superposed to the control scheme [2] 

 
 



 
 
Therefore, when optimal device ratings with low 

0ffm sw=  ratios are applied and high dynamic is desired, 
the simplified prediction model must be built around a 
higher-degree Taylor approximation. 

In this framework it could be of interest to develop a 
second-order predictive direct control (SO-PDC) of a VSI 
coupled to an LC filter. Predictive and direct controls are 
usually employed in systems with single inductive filters 
[3],[6], [13],[17] but there are no references concerning 
predictive direct control of both the inductor current and the 
capacitor voltage. This article explains first the 
fundamentals of predictive direct control of a three-level 
VSI coupled to an LC filter. Next, the accuracy of 
prediction is analyzed, concluding that in the application 
example, a second-order Taylor approximation is needed. 
Then the second-order predictive direct control problem is 
stated and solved. Finally, some simulation and 
experimental results validate the proposed approach. 

 
2. Fundamentals of Predictive Direct Control 
A typical example of a VSI coupled to an LC filter is 
depicted in Fig. 1a. It represents a one-phase three-level 
dynamic voltage restorer (DVR), which can be considered 
as part of a four-wire three-phase system [8]. The DVR 
must add the required series voltage in order to compensate 
sags or short outages of the power source (vs) in such a way 
that nominal output load voltage is assured (vL). Therefore, 
the goal of any DVR control is to drive the output capacitor 
voltage (vc) as fast as possible close to the reference value, 
minimizing the tracking error. 

 
(a) 

 
(b) 

Fig. 1 Three-level VSI coupled to an LC filter: (a) one 
phase DVR, (b) equivalent circuit. 

 
Fig. 1b. shows the equivalent circuit of the system of Fig. 
1a. The VSI can apply one of the three available voltage 
levels { }DCDC VVE −∈ ,,0  and the line current is considered 
as a perturbation. 

 
 

2.1 Modulation cycle definition 
Direct predictive control is based on the so-called 
modulation cycle. A modulation cycle can be defined as the 
concatenated application of the three available voltage 
levels. 
 

{ }DCDC VVEEE −∈ ,,0,, 321 ,     

313221 ,, EEEEEE ≠≠≠  
 

The control technique must select the appropriate sequence 
of application of voltage levels { }321 ,, EEE  and the time of 
application of each level { }321 ,, ttt , in such a way that 
constant predefined switching frequency is assured, that is, 
 

swTttt =++ 321  (1) 
 
Fig. 2a shows an example of a modulation cycle using the 
sequence of voltage levels { } { }DCDC VVEEE −= ,,0,, 321 . 

It has to be noted that the main control idea behind 
this strategy has been explored earlier in other works 
[6],[17], but they dealt with simple inductive filters related 
to first-order Taylor approximation. 
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Fig. 2 (a) Modulation cycle example. (b) State evolution 
along a modulation cycle. 
 

2.2 Formulation of the Predictive Direct Control Problem 
When a modulation cycle is applied the state evolves along 
three concatenated continuous trajectories (see Fig. 2b). 
Table 1 summarizes the set of variables related to each 
trajectory. 

 
Table 1: Concatenated segments 

Segment Application 
time 

Initial 
state 

Final 
state 

1 t1 if0, vc0 if1, vc1 
2 t2 if1, vc1 if2, vc2 
3 t3 if2, vc2 if3, vc3 
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The state and evolution of the variables of the LC filter of 
Fig. 1b. are exclusively driven by the output voltage of the 
inverter, E, and by the line-current iL. If the line-
fundamental frequency is several times lower than the 
switching frequency, it can be supposed that the line-
current iL stays at a quasi constant value iL0 along the 
switching period Tsw. As the line-voltage does not affect the 
evolution of the variables of the LC filter, it is not 
necessary to consider any complementary supposition 
related to this variable. Under these assumptions, the state 
evolution along any segment of the modulation sequence is 
accurately reflected by Eqs (2) and (3): 
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with { }3,2,1∈i  the segment index and  
 

ff
o CL

1
=ω  (4) 

 
the resonant frequency of the filter. 

The predictive direct control problem is formulated 
as follows: knowing the initial state of the system (if0, vc0), 
it is necessary to select the sequence of voltage levels 
{ }321 ,, EEE  and their application times { }321 ,, ttt in such a 
way that the desired final state (if3, vc3) is reached during the 
constant switching period Tsw (1). 

There are three segments and two equations per 
segment, which leads to six equations defining the 
trajectories. Considering the additional constant switching 
restriction (1), a set of seven equations and seven variables 
are obtained; hence, the exact analytical solution shown in 
Eq. (5) is forecasted. In the case of a mismatch between the 
number of variables and equations, an approximate solution 
using the least square optimization is explored [18]. 

 
( )32103300 ,,,,,,,, EEEiviviTft Lcfcfswii =  (5) 

 
The presence of trigonometric functions on the control 
problem makes it difficult to obtain this analytical solution. 
In order to overcome this problem, simpler approximate 
equations must be used in the prediction of the state 
evolution. 

The DVR application provides only the desired final 
capacitor voltage, vc3; hence, it is necessary to derive the 
desired final inductor current, if3. A transient can be 
considered as the evolution of the system from an initial 
steady-state situation to a new steady-state operation point. 
Therefore, a simple steady-state phasor-based analysis will 
provide the required final inductor current, if3. The DVR 
control algorithm provides the phasor of the desired 
capacitor’s voltage, cV  and due to an appropriate PLL it is 

easy to get the line-current phasor LI . Using simple circuit 

relations it is possible to compute the inductor’s current 
phasor (6). 
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As the state evolves during Tsw seconds, the desired final 
instantaneous variables are computed as the projection of 
these phasors along Tsw. 
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If the switching period is much smaller than the line-period, 
Tsw can be neglected in (7). 
 
3. Accuracy of the approximate prediction 
The sine and cosine functions of trajectory description (2)–
(3) can be replaced by their equivalent Taylor series: 
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The maximum error of the Taylor development of the sine 
or cosine function is bounded by the first noncomputed 
term, which changes each odd or even degree. Assuming 
that the state evolves during ti=Tsw/2, Eqs (10) and (11) give 
the maximum error related to an even (odd) order n of 
approximation (derivation in Appendix 10.1). 
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with  
 

0f
fm sw=  (12) 

 
and, 
 

π
ω
2
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Thus the per-unit errors are computed as: 
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Therefore, the per-unit maximum normalized error of state 
approximation is: 
 

22
vcpuifpupu εεε +=  (14) 

 
Fig. 3 shows an example of the per-unit maximum 
normalized error (%) along different approximation orders 
(n) and frequency ratios (m). Parameters of an industrial 
low-voltage high-power DVR [9] have been employed, 
with HLf μ39= , FC f μ1100= , VVDC 550= , 

Vvv cL 2302maxmax ⋅== , and AiL 3000max = . As it can be 
observed, for high 0ffm sw=  ratios a first-order Taylor 
development offers a good accuracy level ( %25<puε ) and 
it can be used in control design tasks. In the case of low m 
values (2<m<5) second- or third-order development must 
be employed in order to get the same level of accuracy. 
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Fig. 3 Normalized maximum error of state approximation 

depending on the development order n and the 
frequency ratio 0ffm sw= . 
 

In the numerical example of this article Hzf 7680 =  and 
Hzfsw 3000= ; hence, a challenging low frequency ratio of 

9.3=m  is obtained. Fig. 3 shows that for a second-order 
development the maximum prediction error is 
approximately 30%, which can be considered as acceptable. 
Although the third-order approximation improves this 
accuracy, the control problem is more complex. Hence, the 
second-order is finally preferred, leading to the Second-
Order Predictive Direct Control. 

Uncertainty on the estimation of Cf and Lf can also 
be a source of error in the prediction of the state evolution. 
Taking fĈ  and fL̂  as the estimated values of Cf and Lf, 

considering fî  and cv̂  the estimated evolutions of if and vc, 
and using Eqs (2) and (3), it is possible to compute the 
prediction errors as follows: 
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with ( ) fffC CCC −= ˆδ  and ( ) fffL LLL −= ˆδ , the per-
unit difference between the estimated and the actual 
parameter values. The normalized prediction error can be 
derived from Eqs (13), (15), and (16). In the case of the 
industrial low-voltage high-power DVR example of the 
earlier paragraph [9], an uncertainty level of 22% on the 
capacitor’s value leads to a prediction error of 
approximately 25%, which can be considered acceptable. In 
the case of the inductor value, an uncertainty level of 10% 
results in the same prediction error. Experimental 
uncertainty levels of capacitors and inductors are below 
these values; hence, a robust behaviour of the SO-PDC 
against uncertainty on the filter’s parameters is expected. 
 
4. Second-order predictive direct control 
The predictive direct control must find out a solution of 
Type (5) using the trajectory description (2)–(3) under the 
constant switching frequency constraint (1). As explained 
earlier, the second-order Taylor’s development offers a 
compromise between accuracy and ease of implementation; 
hence, Eqs (2) and (3) are replaced by their approximate 
equivalents (17),(18). 
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Solving the set of seven equations and seven variables and 
retaining only the terms of order two or lower, the solution 
to the control problem (the application times) is derived 
(19)–(21) (see Appendix 10.2 for the complete derivation 
and the equivalences of coefficients). 
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The selection of the appropriate voltage sequence remains 
as a problem to be solved. Table 2 shows all the possible 
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voltage sequences. The only mandatory restriction related 
to voltage sequence selection is that it must provide non-
negative solutions of Eqs (19)–(21). There are two subsets 
of sequences, { }531 ,, SSSS A =  and { }642 ,, SSSSB = , which 
lead, alternatively, to nonnegative solutions, that is,  if any 
of the sequences of subset SA does not provide a coherent 
solution, it is provided by any of the sequences of the 
subset SB, and vice versa. The subset SA is made up of 
sequences applying the positive voltage level before the 
negative one, and the subset SB collects the other three 
sequences. Generally, each one of the subsets is applied 
during a half of the line-fundamental period, but the 
commutation from one subset to the other depends on the 
line current, capacitor voltage, and inductor current. 
 
Table 2: Possible sequences 

 
Sequence E1 E2 E3 

S1 0 VDC -VDC 
S2 0 -VDC VDC 
S3 VDC -VDC 0 
S4 -VDC VDC 0 
S5 VDC 0 -VDC 
S6 -VDC 0 VDC 

 
In order to get a coherent solution of Eq. (19), both b0 and 
a0 must be positive in such a way that real (nonimaginary) 
and positive application time t2 is obtained. Considering the 
example of the two first sequences S1 and S2, that is, 

VE 01 =  and { }DCDC VVEE −∈ ,, 32 , and using the 
equivalences of Appendix 10.2, next values are obtained: 
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As a0 is always positive, a coherent solution will be assured 
if b0 is positive. For a given initial state and current 
reference values ( )0030 ,,, cLff viiig  remains constant; hence, 

the sign of b0 will only change if the second term of (23) 
changes. As E2

2 is always positive and constant, the sign of 
b0 can be computed as follows: 
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If (25) is divided by 8Tsw, which keeps the sign, and 
combining (4) and (12) with (25), a more useful expression 
is obtained: 
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(26)

with 
0dt

dvc  the initial time-derivative of cv  and 
ref

c

dt
dv  the 

desired average time-derivative along Tsw. In steady-state 
operation, these two derivatives are practically equivalent; 
hence, the next approximate equivalent of (26) can be 
obtained: 
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In the case of large and positive vc0 values, the control 
problem will lead to a coherent solution only if DCVE −=3 , 
i.e., if the first sequence (S1) is chosen. In the case of large 
and negative vc0 values, the second sequence with DCVE =3  
must be chosen (S2). Similar analysis leads to equivalent 
conclusions if sequences S3 and S4 or S5 and S6 are used. 
These results match with the observed behaviour, as shown 
in Section 5. 

This article exploits a simple voltage sequence 
selection strategy: a given subset of sequences is used until 
it does not provide a coherent set of application times, and 
when that happens, the control simply commutes to the 
other subset of voltage sequences, leading to feasible 
positive application times. 

Once the appropriate subset of sequences is 
identified, it is necessary to know which one of the three 
possible sequences must be employed. This selection could 
be made according to any optimization criteria, such as the 
level of injected harmonics, efficiency constraints, or 
others. This topic is still under research and the work 
presented here is based on a simple sequence selection 
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strategy that exploits only two voltage sequences, that is, 
ASS ∈1  and BSS ∈2 . The control must simply change from 

one possible sequence to another (S1 or S2) each time the 
application time solution becomes incoherent. 

 
5. Simulation results 
The parameters of the simulated system are the same as the 
industrial low-voltage high-power DVR of Section 3 [9] 
and simulations have been carried out under the 
MATLAB/SIMULINK environment. As pointed out 
earlier, the parameters of this DVR-example lead to a 
frequency ratio of m=3.9 which makes it difficult to exploit 
the first-order model in control synthesis tasks. This 
difficulty emerges immediately when a standard control 
technique such as the multiloop dead-beat control approach 
is tried. The multiloop dead-beat control is built around an 
inner inductor’s current control loop and an outer 
capacitor’s voltage loop and has been successfully 
employed in systems with high m ratios (see [8]–[11] and 
[19]–[22]). Among the different possible ways of 
developing the dead-beat control, the RST structure 
[21],[22] and the “difference equations” approach [19],[20] 
can be used. Following the RST synthesis procedure 
explored in [21] and [22], the inner-current control-loop has 
been designed, leading to the zero-pole map of Fig.4. This 
figure shows the poles for three different switching 
frequencies: fsw=10 KHz (m=13), fsw=5 KHz (m=6.5), and 
fsw=3 KHz (m=3.9). The last case is the application 
example of this paper. As it can be observed Fig. 4, when 
the frequency ratio decreases, the poles approach the 
stability border defined by the unit circle. When the 
frequency ratio falls down to m=3.9, two unstable poles out 
of the unity circle appear. Therefore, it is not possible to 
exploit the first-order model-based dead-beat control in the 
case of this DVR example. This result launched the 
research activity that culminated in the proposal of this 
article, the SO-PDC. 
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Fig. 4 Pole-zero map of the dead-beat control of the inner 

current loop. Poles related to three possible 
switching frequencies are shown. 

 
In the frame of SO-PDC simulations, both the reference 
tracking behaviour and the regulation capability have been 

analyzed. In the first case, Fig. 5, a reference voltage-step 
has been applied to the filter capacitor. As observed, the 
capacitor voltage reaches the desired new value in just one 
switching sequence, and the resulting voltage and current 
values are always kept close to the reference. Fig. 6 shows 
the state-space trajectory derived from a start-up transient 
(from [vc0=0pu, if0=0pu] to [vc3=0.9pu, if3=0pu]), followed 
by a half-cycle steady operation, a second transient 
(depicted in Fig. 5), and a final half-cycle steady operation. 
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-2000
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-400
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Fig. 5 Voltage step, simulation. 

 
The regulation capability of the DVR is analyzed by a load 
current step, which implies a current step on the filter 
inductor, see Fig. 7a. The current reaches the required value 
in only one switching sequence, and the same stable and 
well-behaved transient as in the earlier case is observed. 
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Fig. 6 State-space trajectory comprising starting transient 

and voltage step, simulation. 
 

Fig. 7b. shows the voltage at the output of the VSI together 
with the sequence number employed in each modulation 
cycle. As observed, the selected sequence follows, in a 
general way, the law that has been predicted in Section 4 
(S1 for large positive vc values and S2 for large negative vc 
values). 

Simulation results are quite satisfactory, and 
considering that it is the simplest SO-PDC strategy and that 
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several improvements would be still possible, it seems to be 
a promising approach. 
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(a) 

 
(b) 

Fig. 7 Current step caused by a load variation, simulation: 
(a) current–voltage response, (b) selected sequence 
and applied voltages. 
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Fig. 8  Experimental setup 
 
6. Experimental results 
In order to validate the proposed control algorithm, 
experimental tests have been carried out at the Power 
Electronics Laboratory of the University of Mondragon. 
The control algorithm has been implanted on a real-time 
dSPACE 1103 platform. This platform offers predefined 
standard SVM and PWM blocks. Therefore, several 
adaptations have to be done in order to implement the SO-

PDC. The SO-PDC comprises: (a) the measurement of the 
state-variables at the beginning of the switching period, (b) 
the generation of the current-voltage reference, and (c) the 
derivation of the appropriate application times. The 
execution time of the SO-PDC algorithm takes 

sec110μ=Dt , which is the 10% of the switching period 
sec10259751 μ==swT . 

An overview of the experimental platform is given 
in Fig. 8 and the simplified control block diagram is 
depicted in Fig. 9. Fig. 10 shows the timing diagram related 
to the generation of application times from tk to tk+1. 
Experimental variables must be sampled close to tk, 
observing the time delay tD required for control tasks. This 
can be easily achieved by launching a timing equal to Tsw-tD 
at tk-1. This timing is accurately generated by a first PWM1 
related to an interruption that starts the execution of the SO-
PDC algorithm.  

PWM1

Measurements
at tk-tD

TswtD

t

tD

Tsw

PLL

vc(t) if(t) iL(t) vs(t)

vc(tk-tD) if(tk-tD)

Prediction 
of vc and if

at tk
iL(tk-tD)

iL(tk-tD)
iL(t)

LE3(k-1)

( )kc tv̂ ( )kf tî

D

iL(tk)

SO-PDC 
algorithm
equations

(19), (20), (21)

Prediction 
of iL at tk

Prediction of 
reference values 

equations
(6), (7)

L

vc3

if3

vc0 if0 iL0

PWM2,3

Tsw

PLD

t1 t1+t2E1 E2 E3

1u 2u

*
cV
r

 
Fig. 9  Control block diagram 

 
Variables are measured sec110μ=Dt  before the beginning 
of the cycle; hence, a prediction of their evolution must be 
carried out in order to estimate the initial state at tk. As tD is 
much smaller than Tsw, a simple first-order model is used 
for predicting the state evolution during the execution of 
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SO-PDC tasks. Once the SO-PDC has been executed and 
the application times from tk to tk+1 are available at tk, they 
are coded through two additional PWM blocks (PWM2 and 
PWM3). The outputs of these PWM signals are then 
decoded by conventional logic circuits and applied to the 
switching drivers. 

 

 
Fig. 10  Experimental timing diagram 

 
Table 3 summarizes the main parameters of both the 
industrial and the experimental DVR with several related 
important ratios. The experimental laboratory setup is 
shared with other research activities, so it does not have 
exactly the same parameters of the industrial DVR. Any 
way, it has been adapted in order to get an experimental 
filter with the same frequency ratio (m=3.9) of the 
industrial DVR. Therefore, the laboratory setup requires the 
same second-order development. Moreover, the 
experimental platform shows lower 1ffsw  and 

10 ff ratios. 
 

Table 3: Converter parameters 
Variable 1.6 MVA DVR Experimental DVR 

fL  Hμ39  mH52  

fC  Fμ1100  Fμ8  

DCV  V550  V100  

1f  Hz50  Hz50  

0f  Hz768  Hz247  

swf  Hz3000  Hz975  

0ffm sw=  3.9 3.9 

1ff sw  60 19.5 

10 ff  15.36 5 
 

Fig. 11 shows the experimental steady-state behaviour of 
both the inductor’s current and the capacitor’s voltage. 
Although the resonance frequency is very close to the 
switching frequency, SO-PDC results in a very stable 
behaviour and keeps the two variables close to the reference 
values. Fig. 12 depicts the experimental transient behaviour 
of the SO-PDC when a reference step is applied. The 
reference tracking capability is excellent and both variables 
reach the new reference values in just one switching 
sequence. Several different scenarios (different switching 

frequencies, filter’s parameters, etc.) have been 
experimentally tested, and the SO-PDC has worked 
properly in all cases, showing a high level of robustness. 
 

 
Fig. 11 Experimental steady-state evolution of current (up, 

1 A/div) and voltage (down, 50 V/div) with 
associated reference. 

 

 
 
Fig. 12 Experimental response of current (up, 1 A/div) and 

voltage (down, 50 V/div) during a reference-step. 
 
7. Conclusions 
In the frame of high-power electronic converters, low 
switching frequency together with optimized LC filters 
leads to poor switching frequency–resonant frequency 
ratios, in such a way that common predictive models based 
on the first-order Taylor’s development are not precise 
enough. These low ratios make the application of habitual 
direct control techniques difficult. This problem can be 
solved by increasing the approximation order up to the 
required level of accuracy. Taking a high power DVR as 
the application example, a second-order model has been 
developed, leading to excellent transient and steady-state 
behaviours. Experimental tests have validated the proposed 
approach. One of the main characteristics of this control 
scheme is the dual tracking capability, driving both the 
capacitor’s voltage and inductor’s current simultaneously. 
Because of the dual tracking capability of the SO-PDC, the 
maximum available system’s dynamic is exploited and 
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faster transient response and stable behaviour for systems 
with weak LC filters are provided. The dual tracking 
capability also provides an inherent stabilizing feature; 
hence, no additional damping resistors or superposed 
stabilizing algorithms are needed. The proposed second-
order predictive direct control has shown a high level of 
robustness in experimental environment, and could be an 
alternative for high-power electronic converters. 

In the case of three-wire three-phase converters, 
preliminary numerical results on the accuracy of the 
Taylor’s approximation reflect the need for the same 
second-order model. Research on the generalization of the 
SO-PDC approach to the three-wire three-phase case will 
be addressed in the future. 
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10. Appendix 
10.1 Derivation of the accuracy of the approximate 
prediction 
In a Taylor series, the accuracy of the nth development-
order is bounded by the (n+1)th term. As it can be observed 
in (8) and (9), the sine development contains only odd 
terms, while the cosine approximation is built by even 
terms. Therefore, the maximum approximation error of the 
sine and cosine Taylor series are: 
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Equations (2) and (3) can be organized as: 
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with 00 Lf iii −=Δ  and Evv c −=Δ 0 , where iL0, if0, and vc0 
are the initial values at the beginning of the state evolution. 
Combining Eqs (28) and (29) with (30), it is possible to get 
the prediction error of odd and even approximation orders. 
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Odd degree of approximation 
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Supposing an application time of half the switching period, 

2swTt = , and considering the relation (12), the following 
equation can be derived directly: 
 

m
t πω =0  (33)

 
The following equation can also be derived directly: 
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Combining (33) and (34) with (31) and (32) it is possible to 
get the prediction-accuracy values as a function of the 
development order n and the frequency ratio m.  
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Odd degree of approximation 
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This leads directly to Eqs (10) and (11).  
 
10.2 Derivation of the application times 
The SO-PDC problem leads to the next set of seven 
equations and seven variables: 
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Replacing 1fi  and 1cv  in (40) and (41) by (38) and (39), 
inserting the resulting 2fi  and 2cv  expressions in (42) and 
(43), and considering (37), a set of two equations (44) and 
(45) and two variables ( )21,tt  is obtained. 
 

( )3210002113 ,,,,,,,, EEEivittTfi Lcfswf =  (44)
( )32103002123 ,,,,,,,,, EEEiivittTfv Lfcfswc =  (45)

 
Considering only the terms of order two or lower, the next 
equation can be derived from (44): 
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Replacing (46) in (45) and considering only the terms of 
order two or lower, the next simple second-order equation 
is obtained: 
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By solving (47), the following equation is obtained directly: 
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